Distinguised Research Professor
Ph.D. (1989) University of California, Berkeley
  • Creative Research Medal, University of Georgia, 2000
  • Grant Support -
    • “Functional Genomics of Maize Centromeres,” NSF
    • “Functional Genomics of Maize Chromatin,” NSF
  • Research Interests -
    • How do chromosomes move? Remarkably little is known about this basic motility event in higher plants. Our approach has been to combine immunocytochemistry, high-resolution 3D light microscopy, and forward genetics to understand the movement of chromosomes in maize. The organelle primarily responsible for chromosome movement is the kinetochore, which binds to centromeric DNA. Much of our current work is directed towards fulfilling the goals of a recently-renewed genome project on maize centromeres. We have ongoing projects on the roles of Centromeric Histone H3 and Centromere Protein C (CENH3, CENPC) in centromere/kinetochore structure. In addition we are focusing the epigenetic control of centromeres as well as chromatin-level gene silencing in maize heterochromatin. The spectacular cytology of the maize meiocyte, combined with deconvolution-based 3D light microscopy provides us with unparalleled resolution in our analyses.
Research Area: 
Selected Publications: 
  • Phan B.H., W Jin., C.N. Topp, C.X. Zhong, J. Jiang, R.K. Dawe and W.A. Parrott. 2007. Insertion of >100 kb centromeric repeat arrays into the rice genome by biolistic DNA transfer. Transgenic Res. 16: 341-351.
  • Du, Y. and R.K. Dawe 2007. Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res. 15: 767-775.
  • Leebens-Mack, J., R.K. Dawe and S.R. Wessler. 2007. Genomes and evolution. Curr. Opin, Gen. Dev. 17: 471-472.
  • Shi, J. and R.K. Dawe. 2006. Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173: 1571-1583.
  • Mroczek, R.J., J.R. Melo, A.C. Luce, E.N. Hiatt and R.K. Dawe 2006. The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype. Genetics 174: 145-154.
  • Luce, A., A. Sharma, O.S.B. Mollere, T.K. Wolfgruber, K. Nagaki, J. Jiang, G.G. Presting, R.K. and Dawe. 2006. Precise centromere mapping using a combination of repeat Junction markers and ChIP-PCR. Genetics 174: 1057–1061.
  • Dawe, R.K. and S. Henikoff. 2006. Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31: 662-669.
  • Topp, C.N. and R.K. Dawe. 2006. Reinterpreting pericentromeric heterochromatin. Curr. Opin. Plant Biol. 9:647–653.
  • Dawe, R.K. 2005. Centromere renewal and replacement in the plant kingdom. Proc. Nat. Acad. Sci. USA 102: 11573-11574.
  • Jin, W., J.C. Lamb, J.M. Vega, R.K. Dawe, J.A. Birchler and J. Jiang. 2005. Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17: 1412-1423.
  • Dawe, R.K., E.A. Richardson and X. Zhang. 2005. The simple ultrastructure of the maize kinetochore fits a two-domain model. Cytogenet. Genome Res. 109: 128-133.
  • Zhang, X., X. Li, J.B. Marshall, C.X. Zhong and R.K. Dawe. 2005. Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere duringchromosome segregation. Plant Cell 17: 572-583.
  • Dawe, R.K. 2004. RNA interference on chromosomes. Nat Genet. 36: 1141-1142.
  • Topp, C.N., C.X. Zhong and R.K. Dawe. 2004. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc. Natl. Acad. Sci. USA. 101: 15986-15991.
  • Lawrence, C.J., R.K. Dawe, K.R. Christie, D.W. Cleveland, S.C. Dawson, S.A. Endow, L.S.B. Goldstein, H.V. Goodson, N. Hirokawa, J. Howard, R.L. Malmberg, J.R. McIntosh, H. Miki, T.J. Mitchison, Y. Okada, A.S.N. Reddy, W.M. Saxton, M. Schliwa, J.M. Scholey, R.D. Vale, C.E. Walczak, and L. Wordeman. 2004. A standardized kinesin nomenclature. J. Cell Biol. 167: 19-22.
  • Dawe, R.K. and E.N. Hiatt. 2004. Plant neocentromeres: fast, focused and driven. Chromosome Res. 12: 655-669.
  • Lawrence, C.J., C.M. Zmasek, R.K. Dawe and R.L. Malmberg. 2004. LumberJack: a heuristic tool for sequence alignment exploration and phylogenetic inference. Bioinformatics 20: 1977-1979.
  • Jin. W., J.R. Melo, K. Nagaki, P.B. Talbert, S. Henikoff, R.K. Dawe and J. Jiang. 2004. Maize centromeres: fine structure and functional adaptation in the genetic background of oat. Plant Cell 16: 571-581.
  • Jiang, J., J.A. Birchler, W.A. Parrott and R.K. Dawe. 2003. A molecular view of plant centromeres. Trends Plant Sci. 8: 570-575.
  • Mroczek, R.J. and R.K. Dawe. 2003. Distribution of retroelements in centromeres and neocentromeres of maize. Genetics 165: 809-819.
  • Birchler, J.A., R.K. Dawe and J.F. Doebley. 2003. Marcus Rhoades: Preferential segregation and meiotic drive. Genetics 164: 835-841.
  • Hiatt, E.N. and R.K. Dawe. 2003. Four loci on Abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699-709.
  • Nagaki, K., P.B. Talbert, C.X. Zhong, R.K. Dawe, S. Henikoff and J. Jiang. 2003. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163: 1221-1225.
  • Nagaki, K., J. Song, R. Stupar, A.S. Parokonny, Q. Yuan, S. Ouyang, J. Liu, R.K. Dawe, C.R. Buell, and J. Jiang. 2003. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163: 759-770.
  • Hiatt, E.N. and R.K. Dawe. 2003. The meiotic drive system on maize abnormal chromosome 10 contains few essential genes. Genetica 117: 67-76.
  • Dawe, R.K. 2003. RNA interference, transposons, and the centromere. Plant Cell 15: 297-301.
  • Hiatt, E.N., E. Kentner and R.K. Dawe. 2002. Independently-regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell 14: 407-420.
  • Zhong C.X., J.B. Marshall, C. Topp, R.J. Mroczek, C.R.A Kato, K. Nagaki, J.A. Birchler, J. Jiang and R.K. Dawe. 2002. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825-2836.
  • Lawrence, C.J., R.L. Malmberg, M.G. Muszynski and R.K. Dawe. 2002. Maximum likelihood methods reveal conservation of function among closely related kinesin families. J. Mol. Evol. 54: 42-53.
  • Lawrence, C.J, N.R. Morris, R.B. Meagher and R.K. Dawe. 2001. Dyneins have run their course in the plant lineage. Traffic 2: 362-363.
  • Yu, H.-G., E.N. Hiatt and R.K. Dawe. 2000. The plant kinetochore. Trends Plant Sci. 5: 543-547.
  • Yu, H.-G. and R.K. Dawe. 2000. Functional redundancy in the maize meiotic kinetochore. J. Cell Biol. 151: 131-141.
  • Dawe, R. K., L.M. Reed, H.-G. Yu, M.G. Muszynski and E.N. Hiatt. 1999. A maize homolog of mammalian CENP-C is a constitutive component of the inner kinetochore. Plant Cell 11: 1227-1238.
  • Yu, H.-G., M. G. Muszynski and R.K. Dawe. 1999. The maize homolog of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol. 145: 425-435.
  • Buckler, E.S. IV, K. Phelps, C.S. Buckler, R.K. Dawe, J.F. Doebley and T.P. Holtsford. 1999. Meiotic drive of knobs reshaped the maize genome. Genetics 153: 415-426.
  • R. K. Dawe. 1998. Meiotic chromosome organization and segregation in plants. Ann. Rev. Plant Phys. Plant Mol. Biol. 49: 371-395.
  • Richards, E. J. and R.K. Dawe. 1998. Plant centromeres: structure, function and control. Curr. Opin. Plant Biol. 1: 130-135.
  • Yu, H-G., E. N. Hiatt, A. Chan, M. Sweeney and R.K. Dawe. 1997. Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139: 831-840.
  • Dawe, R.K. and W. Z. Cande. 1996. Induction of centromeric activity in maize by Suppressor of meiotic drive 1. Proc. Natl. Acad. Sci USA 93: 8512-8517.
  • Dawe, R.K., J.W. Sedat, D.A. Agard and W. Z. Cande. 1994. Chromosome synapsis in maize is associated with a novel chromatin organization. Cell 76: 901-912.
Research Interests Detail: 

Cytogenetics of chromosome movement: motility of chromosomes in maize