Associate Professor
Ph.D. (2004) University of Rochester

Dyer Lab Website

Research Interests:   Evolutionary genetics in Drosophila

What shapes genetic and phenotypic diversity in natural populations? We are broadly interested in the interaction between evolution, genetics, and ecology. The first main topic of research in the lab is how organisms adapt to their environment. We are interested in the genetic basis of ecologically important traits and how evolutionary forces such as selection and gene flow interact in the processes of adaptation and speciation. The second main topic of research is how the genetic environment affects gene evolution. For example, factors such as the pattern of inheritance, the level of recombination, and the presence of selection at nearby genes can have significant consequences for how a gene responds to selection. To address these questions we take an integrative approach, and combine molecular techniques and classical Drosophila genetics with theoretical modeling, behavioral observations, and field studies. We use various species of Drosophila because they are tractable in both genetic and ecological studies.

Of Note:

  • Council Member, Society for the Study of Evolution, 2014-2017
  • Council Member, European Society for Evolutionary Biology, 2013-2017
  • CAREER Award, National Science Foundation, 2012
  • Council Member, American Genetics Association, 2011-2013
  • Associate Editor, Evolution, 2010-2012
  • Lilly Teaching Fellow, 2009-2011
  • New Scholar in Aging, Ellison Medical Foundation, 2009
  • Reviewing Editor, Journal of Evolutionary Biology, 2009-2012

Current Grant Support:

  • "CAREER: Evolutionary genetics of mate dsicrimination in the fly Drosophila subquinaria," (NSF)
  • "The impacts of the distribution of phenotypic effects and the distribution of pleiotropic costs on the genetics of natural adaptations" (NSF, with C. Jones and P. Volkan)
Research Area: 
Selected Publications: 
  • Rundle, H. D. and K. A. Dyer. 2015. Reproductive character displacement of female mate preferences for male cuticular hydrocarbons in Drosophila subquinaria. Evolution, online early. doi: 10.1111/evo.12761

  • Conn, C. E., R. Bythell-Douglas, D. Neumann, S. Yoshida, B. Whittington, J. H. Westwood, K. Shirasu, C. S. Bond, K. A. Dyer, and D. C. Nelson. 2015. Convergent evolution enabled host detection in parasitic plants. Science 349: 540-543.

  • Arthur, N. J., and K. A. Dyer. 2015. Asymmetrical sexual isolation but no postmating isolation between the closely related species Drosophila suboccidentalis and D. occidentalis. BMC Evolutionary Biology 15:38.

  • Bewick, E. R., and K. A. Dyer. 2014. Reinforcement shapes clines in mate discrimination in Drosophila subquinaria. Evolution 68: 3082-3094.

  • Dyer, K. A., B. E. White, J. Sztepanacz, E. R. Bewick, and H. D. Rundle. 2014. Reproductive character displacement of epicuticular compounds and their contribution to mate choice in Drosophila subquinaria and D. recens. Evolution 68: 1163-1175.

  • Bray, M. J., T. Werner, and K. A. Dyer. 2014. Two genomic regions together cause dark abdominal pigmentation in Drosophila tenebrosa. Heredity 112: 454-462.

  • Pinzone, C. P., and K. A. Dyer. 2013. Higher polyandry is associated with lower prevalence of sex-ratio drive in natural populations of Drosophila neotestacea. Proceedings of the Royal Society, Series B 280: 20131397.

  • Debban, C. L., and K. A. Dyer.  2013. No evidence for behavioral adaptations to nematode parasitism by the fly Drosophila putrida. Journal of Evolutionary Biology 8: 1646-1654.     

  • Curtis, S., J. Sztepanacz, B. E. White, K. A. Dyer, H. Rundle, and P. Mayer. 2013. Epicuticular compounds of Drosophila subquinaria and D. recens: Identification, quantification, and their role in female mate choice. Journal of Chemical Ecology 39: 579-590.          
  • Giglio, E.M. and K.A. Dyer. 2013. Divergence of premating behaviors in the sister species Drosophila subquinaria and D. recens. Ecology and Evolution 3: 365-374.      
  • Dyer, K.A., M.J. Bray, and S.J. Lopez. 2012. Genomic conflict drives patterns of X-linked population structure in Drosophila neotestacea. Molecular Ecology 22: 157-169.          
  • Dyer, K.A. 2012. Local selection underlies the geographic distribution of sex-ratio drive in Drosophila neotestacea. Evolution 66: 973-984.   
  • Dyer, K.A., C. Burke, and J. Jaenike. 2011. Wolbachia-mediated persistence of mtDNA from a potentially extinct species. Molecular Ecology 20: 2805-2817.     
  • Dyer, K.A., B.E. White, M.J. Bray, D.G. Piqué, and A.J. Betancourt. 2011. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila. Molecular Biology and Evolution 28: 1293-1306.     
  • Jaenike, J. and K.A. Dyer. 2008. No resistance to male-killing Wolbachia after thousands of years of infection. Journal of Evolutionary Biology 21: 1570-1577.     
  • Dyer, K.A., B. Charlesworth and J. Jaenike. 2007. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive.  Proc. Natl. Acad. Sci. USA 104: 1587-1592.     
  • Jaenike, J., K.A. Dyer, C. Cornish and M.S. Minhas. 2006. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biology 4: 1852-1862.     
  • Dyer, K.A. and J. Jaenike. 2005. Evolutionary dynamics of a spatially structured host-parasite association: Drosophila innubila and male-killing Wolbachia. Evolution 59: 1518-1528.     
  • Dyer, K.A., M.S. Minhas and J. Jaenike. 2005. Expression and modulation of embryonic male-killing in Drosophila innubila: Opportunities for multi-level selection. Evolution 59: 838-848.     
  • Shoemaker, D.D., K.A. Dyer, M. Ahrens, K. McAbee and J. Jaenike. 2004. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168: 2049-2058.      
  • Dyer, K.A. and J. Jaenike. 2004. Evolutionary stable infection by a male-killing endosymbiont in Drosophila innubila: Molecular evidence from the host and parasite genomes. Genetics 168: 1443-1455.      
  • Guindon, S., A.G. Rodrigo, K.A. Dyer and J.P. Huelsenbeck. 2004. Modeling the site-specific variation of selection patterns along lineages.  Proc. Natl. Acad. Sci. USA 101: 12957-12962.     
  • Huelsenbeck, J.P. and K.A. Dyer. 2004. Bayesian estimation of positively selected sites. Journal of Molecular Evolution 58: 661-672.     
  • Jaenike, J., K.A. Dyer and L.K. Reed. 2003. Within-population structure of competition and the dynamics of male-killing Wolbachia. Evolutionary Ecology Research 5: 1023-1036.     
  • Ross, C.L., K.A. Dyer, T. Erez, S.J. Miller, J. Jaenike and T.A. Markow. 2003. Rapid divergence of microsatellite abundance among species of Drosophila. Molecular Biology and Evolution 20: 1143-1157.     
  • Price, C.S.C., K.A. Dyer and J.A. Coyne. 1999. Sperm competition in Drosophila males involves both displacement and incapacitation. Nature 400: 449-452.
Research Interests Detail: 

Population genetics and molecular evolution; genetic basis of adaptation and speciation; intragenomic conflict and selfish genetic elements; host-parasite interactions; insect ecology and evolution